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Introduction5

This supplemental material provides details on the spatial statistical analysis that was used to ex-6

amine spatial variability of stream temperature using all 48 sites in our Keel Mountain, Oregon,7

USA study area, and its relationship to geomorphic attributes and forest thinning treatments.8

Stream temperature metrics9

The first step was to determine a suitable response variable that captured the spatial variability of10

stream thermal regimes at the study area (Arismendi et al., 2013). We calculated eight metrics11

from both the 2012 and 2013 daily stream temperature data: annual mean, annual maximum,12

annual minimum, annual standard deviation, annual interquantile range (IQR), number of days13

above 10 ◦C, number of days below 5 ◦C, maximum weekly annual temperature (MWAT) (Figures14

1 and 2). Sites were removed from analysis if the records contained data gaps that exceeded 10%15

of the total annual record. This resulted in data from 48 and 42 sites analyzed for 2012 and 2013,16

respectively. Many of the metrics were correlated with each other. In this supplement we only17

show results for standard deviation of mean daily stream temperature and mean annual stream18

temperature; however, we performed these analyses for all metrics listed above.19

Predictor variables20

We considered nine predictor variables to be used in the statistical models to predict spatial stream21

temperature variability (Table 1). These included geomorphic attributes determined from a LiDAR-22

derived digital elevation model (DEM; resolution 0.91 m) of the study area and used in other stud-23

ies (Scott et al., 2002; Wehrly et al., 2009; Daigle et al., 2010; Hrachowitz et al., 2010; Mayer,24

2012; Moore et al., 2013). We also included two variables based on field measurements (stream25

width and dominant streambed substrate at datalogger location). The study area has been subject26

to forest harvesting as part of the Density Management and Riparian Buffer Study (Cissel et al.,27
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2006). Harvesting has consisted of upland thinning treatments with riparian buffers. Therefore, we28

included two factor variables representing forest thinning treatments associated with the riparian29

and upland thinning. Each site was assigned a treatment combination based on those treatments30

found upstream of the sensor location. For more information on the forest harvesting treatments31

please consult Anderson et al. (2007); Olson and Rugger (2007); Olson and Weaver (2007); Olson32

et al. (2007, 2014); Olson and Burton (2014).33

Spatial statistical modelling34

Spatial correlation structure35

It was critical to account for spatial correlation in the statistical models due to the spatial distribu-36

tion of the data loggers. We compared stream network and Euclidean approaches for representing37

the spatial correlation structure. We used the SSN package (Ver Hoef et al., 2014) for R (R Devel-38

opment Core Team, 2014) to fit models specifically developed for accounting for stream network39

distances (Peterson and Ver Hoef, 2010). We fit models using different temperature response vari-40

ables and predictors with: 1) no spatial correlation structure; 2) Euclidean correlation structure; and41

3) stream network correlation structure. We compared model performance by evaluating the dif-42

ference in the second-order Akaike’s Information Criterion (AICc) for small samples (Hurvich and43

Tsai, 1989). The comparison supported the use of either a stream network or Euclidean structures44

over no spatial correlation structure (∆AICc > 10); however, there was not support for favouring45

the stream network structure (AICc = 77.8) over the Euclidean structure (AICc = 74.8). This is not46

surprising since the stream network is not completely nested and the Euclidean distances between47

sites are similar to the stream network distances. In addition, the model did not appear to be sen-48

sitive to changing the Euclidean error structure (exponential, Gaussian, linear, rational quadratics,49

or spherical). Therefore, we used an exponential spatial correlation structure for all subsequent50

analyses.51

Modelling52

None of the predictors were strongly related to the various temperature metrics when examined53

individually (e.g., Figures 3 and 4 for standard deviation of daily mean stream temperature as the54

response variable, and Figures 5 and 6 for the annual mean stream temperature as the response55

variable). We conducted a data exploration exercise where we fit every possible combination of56

predictor variable set and ranked the models using AICc. Conducting this kind of data exploration57

exercise is not considered appropriate for making statistical inferences since it is likely to select58

spurious models (Burnham and Anderson, 2002); however, our goal was to exhaustively check59

if any of the predictors used in our analysis had any relationship to the temperature metrics. We60

also considered interaction terms in our data exploration exercise, but for brevity, only report the61

non-interaction results here.62
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We fit the following global model:63

Tw = β0 + β1aspect+ β2elevation+ β3log(catchmentArea) + β4skyV iewFactor+

β5slope+ β6streamWidth+ β7substrate+ β8riparianTreatment
(1)

where Tw is the response variable (one of the eight stream temperature metrics assessed), and βi64

are the coefficients of the predictor variables to be fit by a generalized linear model using maximum65

likelihood method. We did not include upland treatment in the global model since it created issues66

in model convergence due to the large number of total factor variables in the model compared to the67

sample size. It was preferred to include the riparian treatment over the upland treatment because it68

is presumed to have more influence on stream temperature.69

Tables 2 to 5 show subsets of the highest ranked models by AICc. We show only the models70

that had a ∆AICc < 4. The results show that there is weak support for the best models and that71

model uncertainty is high. There is little support that the predictor variables used to represent72

differences in site characteristics and forest thinning treatments explain the spatial variability in73

stream temperature at Keel Mountain. These results were consistent when considering the other74

six stream temperature metrics.75
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Table 1: List of predictor variables used in the statistical analyses.
Predictor Unit Notes

Elevation metres Extracted from DEM
log(CatchmentArea) m2 Logarithm of the catchment area determined using the D8 algorithm
Slope ◦ Channel slope extracted from DEM
Aspect ◦ Aspect extracted from DEM
Sky view factor - Terrain sky view factor extracted from DEM
Stream width metres Stream width measured in the field at datalogger location
Substrate factor Dominant streambed substrate assessed in the field at datalogger loca-

tion. Three classes include: coarse, medium, and fine.
US Riparian factor Upstream riparian thinning treatment:

• con: control, no treatment

• cc: clearcut, clearcut upstream outside of study area boundary

• one: one tree width, approximately 70 m on each side of
streams

• two: two tree width, approximately 145 m on each side of
streams

• stream: streamside retention, 6 m on each side of streams

• var: variable width buffer, 15 m minimum width on each side
of streams

• tt: thin-through, thinned riparian buffer (reduction in trees per
hectare from around 430-600 to around 150)

US Upland factor Upstream upland thinning treatment:

• con: control, no thinning and around 430-600 trees per hectare

• high: high density retention, thinned upland with around 150
trees per hectare

• mod: moderate density retention, thinned upland with around
85 trees per hectare

• var: variable retention, thinned upland with around 100 trees
per hectare and 0.4 ha circular clearcuts
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Figure 1: Matrix of scatterplots for the 2012 stream temperature metrics considered. All metrics
were calculated using mean daily stream temperature. ’mean’ is mean annual stream temper-
ature, ’variance’ is annual stream temperature variance, ’minimum’ is annual minimum stream
temperature, ’maximum’, is annual maximum stream temperature, ’IQR’ is the interquantile range
of annual stream temperature, ’stdDev’ is the standard deviation of annual stream temperature,
’threshold10’ is the number of days when stream temperature exceeded 10 ◦C, ’threshold5’ is the
number of days when stream temperature was below 5 ◦C, and ’MWAT’ is the maximum weekly
average temperature.
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Figure 2: Matrix of scatterplots for the 2013 stream temperature metrics considered. All metrics
were calculated using mean daily stream temperature. ’mean’ is mean annual stream temper-
ature, ’variance’ is annual stream temperature variance, ’minimum’ is annual minimum stream
temperature, ’maximum’, is annual maximum stream temperature, ’IQR’ is the interquantile range
of annual stream temperature, ’stdDev’ is the standard deviation of annual stream temperature,
’threshold10’ is the number of days when stream temperature exceeded 10 ◦C, ’threshold5’ is the
number of days when stream temperature was below 5 ◦C, and ’MWAT’ is the maximum weekly
average temperature.

11



●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

620 640 660 680 700 720 740

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Elevation (m)

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

6 8 10 12 14

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Log(CatchmentArea) (m2)

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Slope (°)

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50 100 150 200 250 300 350

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Aspect (°)

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.90 0.92 0.94 0.96 0.98

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Sky view factor (−)

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

Stream width (m)

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

coarse fine medium

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Dominant substrate class

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

cc con one stream tt two var

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Upstream riparian treatment

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

●

●

con high mod var

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Upstream upland treatment

T
w
  s

ta
nd

ar
d 

de
vi

at
io

n 
(°

C
)

2012 − annual standard deviation

Figure 3: Scatterplots of nine geomorphic/forest attributes and 2012 standard deviation of annual
stream temperature for the 48 sites. See Table 1 for more information on the geomorphic/forest
attributes.
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Figure 4: Scatterplots of nine geomorphic/forest attributes and 2013 standard deviation of annual
stream temperature for 42 sites. See Table 1 for more information on the geomorphic/forest at-
tributes.
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Figure 5: Scatterplots of nine geomorphic/forest attributes and 2012 mean annual stream tempera-
ture for the 48 sites. See Table 1 for more information on the geomorphic/forest attributes.
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Figure 6: Scatterplots of nine geomorphic/forest attributes and 2013 mean annual stream tempera-
ture for 42 sites. See Table 1 for more information on the geomorphic/forest attributes.
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